

Novaled AG

Technology Entrepeneurship am KIT 2.2.2011

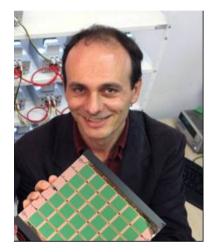
Jan Blochwitz-Nimoth, Founder, CSO Novaled AG

Outline

- Novaled development 2001-2010
- Novaled management tools
- Novaled technology: doping, OLED, other organic electronics
 - Novaleds markets: OLED display, OLED lighting, OPV, Electronic

Novaled at a Glance

Foundation and Legal form	 > 2001 by Karl Leo, Jan Blochwitz-Nimoth, Martin Pfeiffer, Jörg Amelung as a spin-off of TU Dresden and FhG to commercialize OLED technology > Stock corporation by March 2006 	
Today	World leader in energy-saving in the field of small-molecule OLEDs and OLED applications with the Novaled PIN [®] technology and materials	
Turnover and Financing	 > 2010: €11.2 Mio. (2009: €8.1 Mio.); CAGR: >30% in the last 3 years > Venture capital funded, 3rd round of financing in 2009 	
IP	> 400 patents, the largest number in the molecular (organic) doping field	
Personnel	 A business driven organization with skills in Physics, Optics & Chemistry; Assembly & Manufacturing; Marketing & Sales Headcount: 100 	
Offices	> HQ: Dresden with presence in Japan (office), Taiwan and Korea (agents)	


Novaled founders team 2001-2003

Prof. Karl Leo - Prof. TUD-IAPP & Institutsleiter Fraunhofer; - Involved in Spin-Offs: CreaPhys, Novaled, Sim4Tec, Heliatek, LedOnOLED

Dr. Martin Pfeiffer

PhD at IAPP on dopedorganic semiconductorsco-founder of Heliatek

Dr. Jan Blochwitz-Nimoth

- PhD at IAPP on PIN-OLEDs

Jörg Amelung - physics Uni Darmstadt,

Elektronik - co-founder of LedOnOLED

Involvement of TU Dresden and Fraunhofer

TU Dresden

- Framework Agreement closed before 1st financing round (conditional)
- > TUDAG becomes shareholder of Novaled
 - TUD profits from value development of Novaled without limiting freedom to operate for Novaled
- > Novaled has first right to purchase IAPP IP on Organic electronic
- > Intensive scientific cooperation agreed

FhG-IPMS

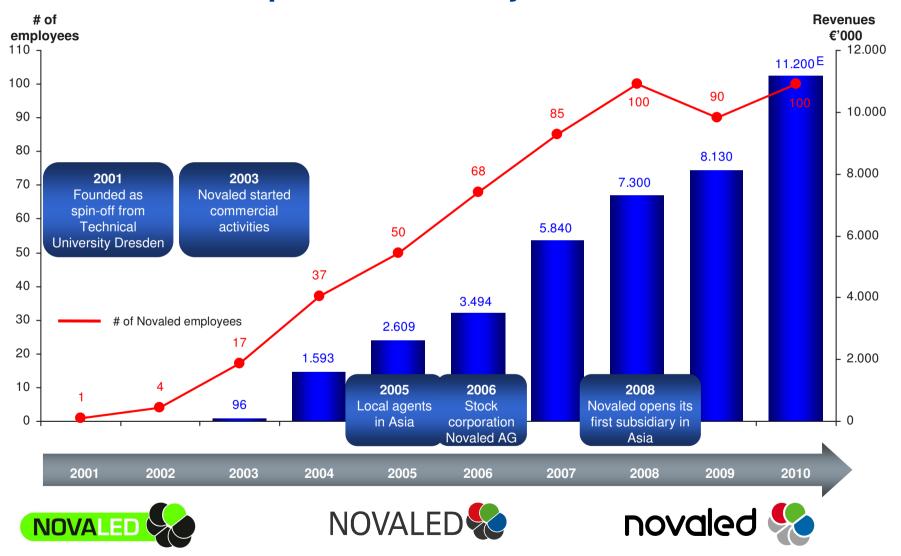
- Framework Agreement on cooperation closed before 1st financing round
- > Fraunhofer role: help bridging transition from idea to product

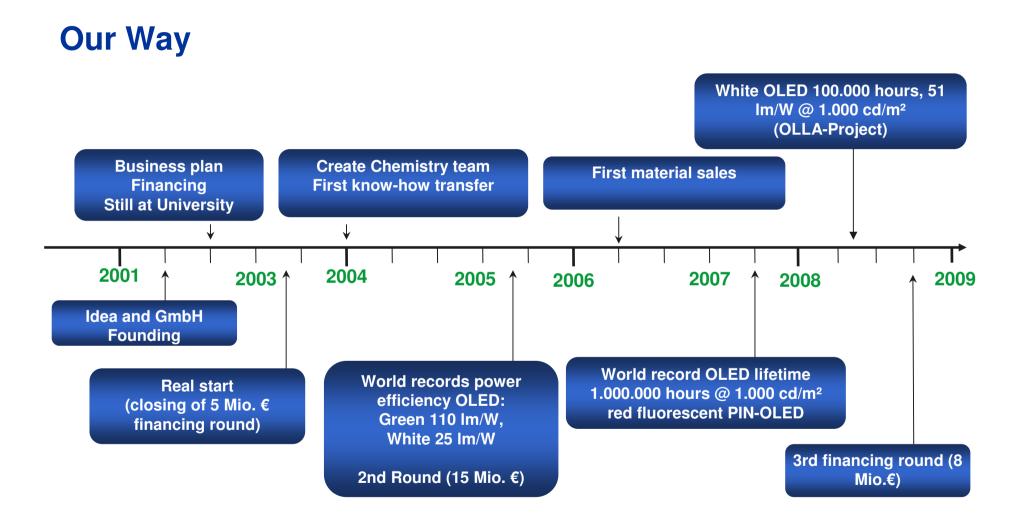
Novaled's co-operation with TU Dresden

At the beginning:

- > Co-use of laboratories
- First offices
- Sample production for University
- Hiring people
- > Partially parallel development

Today:


- > Novaled finances basic research project
- Cooperation in local networks
- > Discussion on lower levels
- Make know-how available (e.g. equipment) in both directions



Novaled - A Unique Growth Story

Financial Backing by Leading Capital Firms

Public Funding

- Novaled fast growth not possible without public funding
- > Even before 1st round of financing: verbal commitment by Saxony to support a Novaled project

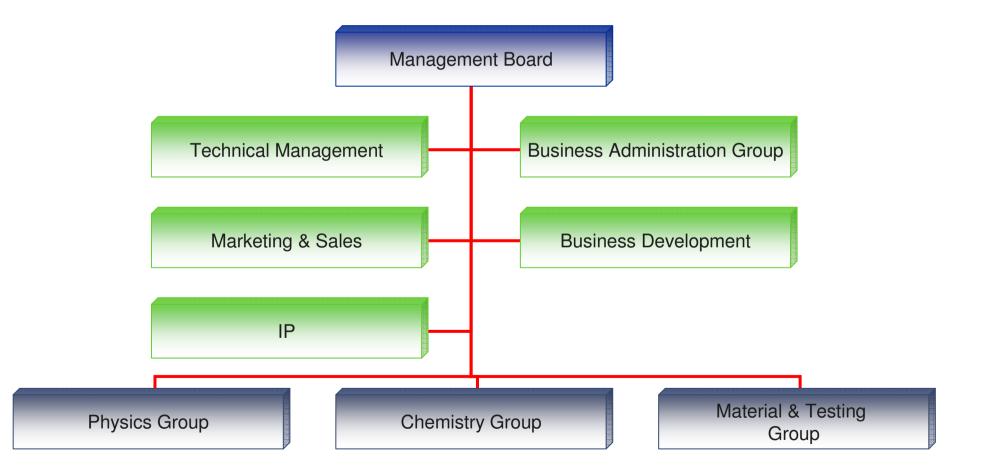
> Financial support by public funding from

- > Saxony: early phase, more early stage projects
- > BMBF: OLED and OPV Initiatives
- > BMWA: smaller SME related projects
- > EU (FP6, FP7, mainly ICT program): OLED lighting

Novaled Organization development

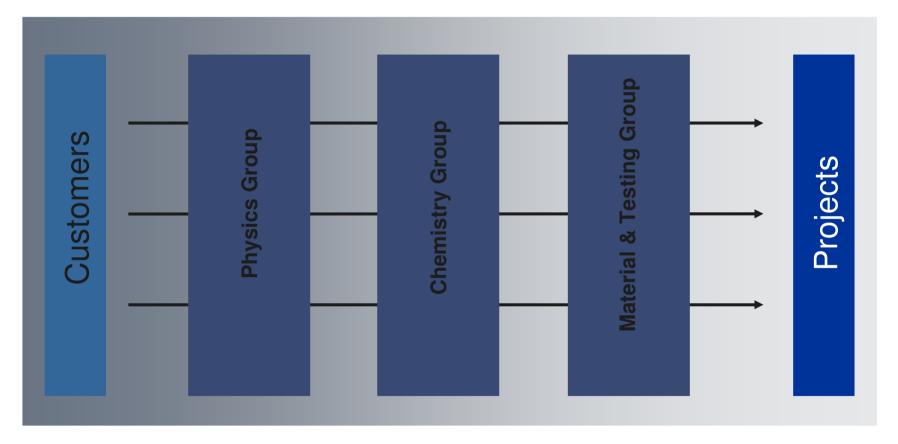
- 'Letterbox company': 2001-2003
 - > Founders are still at University or Fraunhofer

>GmbH (German limited liability company): 2003-2005


- > 2 Managing Director (Geschäftsführer)
- Supervised by Advisory Board (4 members)
- > 3 Groups (Physics, Chemistry, Manufacturing&Testing)
- > Project driven matrix structure

> AG (stock corporation, non-traded): 2005-today

- > 3 Management Board Members (Vorstände, first CEO, CTO, CFO; today CEO, CFO, CMO)
- Supervised by Supervisory Board (6 members: 4 risk investors, 1 founder, 1 industry)
- > 3-4 Groups, project structure changes every 1-2 years
- In 2009: created business line structure (stopped matrix organization)



Novaled Organisation around 2007: matrix structure I

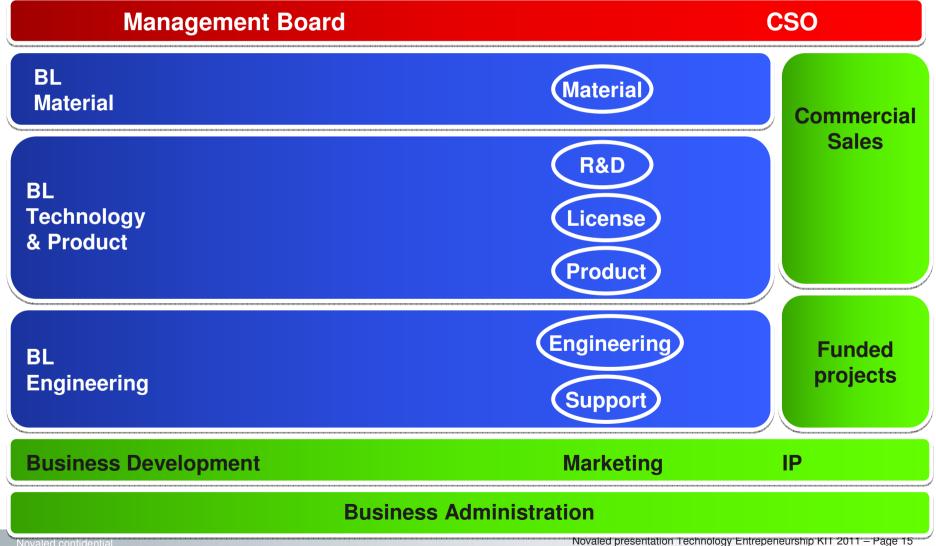
Novaled Organisation around 2007: matrix structure II

Cross-functional-organisation

Novaled managing directors and later Management Board 2003-2009

Gildas Sorin (2003)

Managing director, later CEO; Background in Electronics, Manager in Thomson and Philips


Dr. Jan Blochwitz-Nimoth (2001) Managing Director, later CTO, Background in Physics, Optics

Harry Böhme (2006) CFO Backround in Legal, Finance, Manager in Intershop

Novaled organization 2010

Novaled Management Board 2011

Harry Boehme

Chief Financial Officer Director

 18 years experience in corporate law and corporate finance in high tech industries

Gerd Guenther

Chief Marketing Officer Director

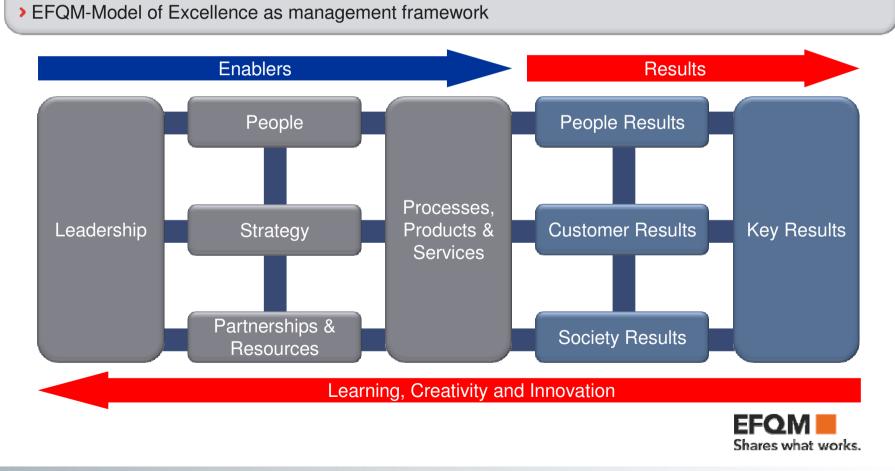
 > 20 years international and management experience in the consumer electronics field

Novaled and Quality management

- > 2001-2003
 - > nothing
- > 2003 till 2006
 - > Implementation of first management tools (BBS, PPS)
 - > To be considered: research staff usually skeptical

> 2006 - today

- > Decision for EFQM: total quality approach
- > Circumvent ISO as long as possible (due to fabless approach this is feasible)
- > EFQM Committed to Excellence Award 2008
- > Quality Audits passed
- > EFQM Excellence 5 Star Award 2010
 - > Seems rare at such early stage


> 2011:

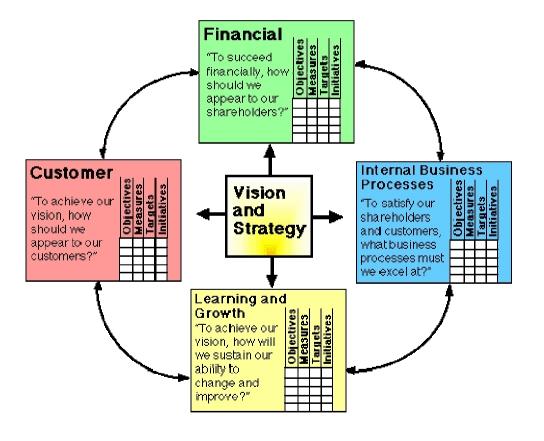
> ISO to be done (customer request with growing business)

> Novaled's Total Quality Approach

Novaled - an Active Member of the European Foundation for Quality Management (EFQM)

Business Balanced Scorecard (BBS)

> Target:

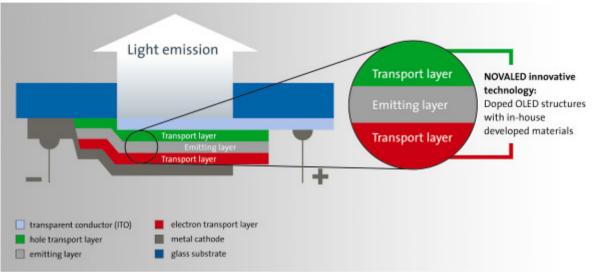

- > Performance Measurement
- Managing Performance
- To hold everyone responsible for the Company business objectives
- > Focus on the crucial factors Critical Success Factors (CSF) for business success/ achieving the strategic goals and creating value

> Present the factors in a chain of four perspectives

BBS - Four Perspectives

Key performance indicators (KPI's) to measure the critical success factors have to be

SMART:


- Specific,
- Measurable,
- Ambitious,
- Realistic,
- Time phased

Novaled Technology & Markets

Novaled OLED Technology

Novaled develops an innovative highly efficient OLED structure based on proprietary doping materials

World Leader in

Power Efficiency

Basic OLED scheme bottom emission

OLED Benefits

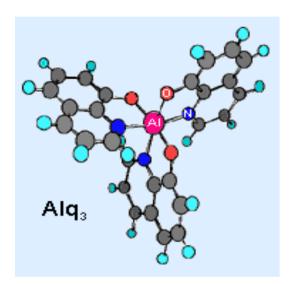
- Ultra Thin (<150 Nanometer)
- Excellent color and contrast
- > 180° viewing angle
- > Large area diffuse light source
- > Transparent

Advantages for Novaled Customers

- > Extremely low operating voltage
- Highest efficiency
- > Inverted, top-emitting structures
- > Transparent, metal-free OLEDs
- > Easy integration on all substrates

Organic Semiconductors

Delocalized pi-electron systems, Example: Benzene


Source: T. Däubler, Botest systems

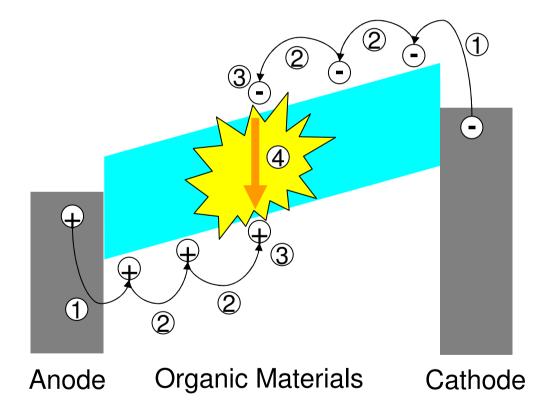
- > Electrons are delocalized over the molecule
- Positive and negative charges can be stabilized
- > π -systems enable hopping between molecular sites



OLED Materials

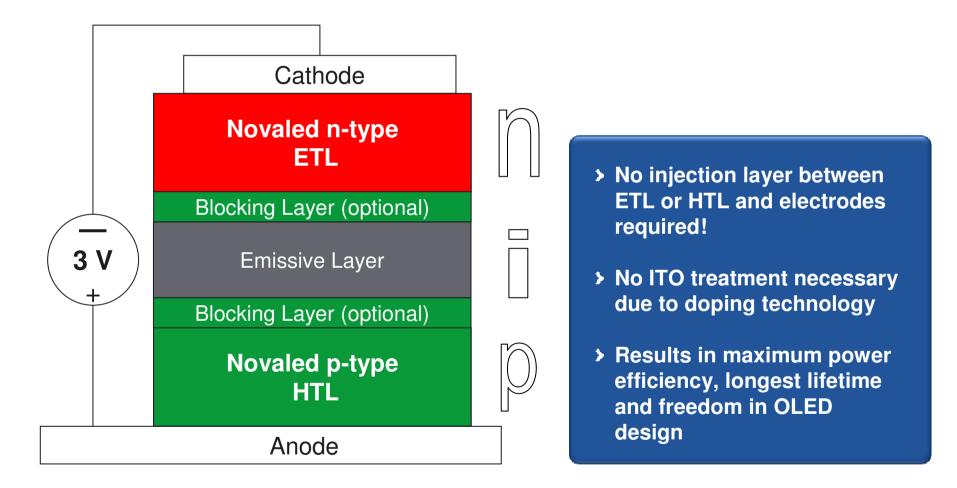
Small Molecules

<u>P</u>olymer

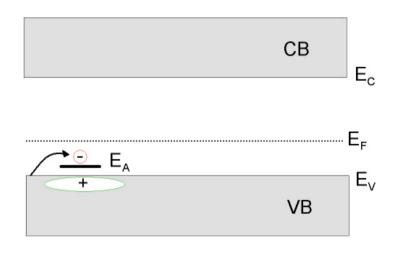

Technology: Evaporation

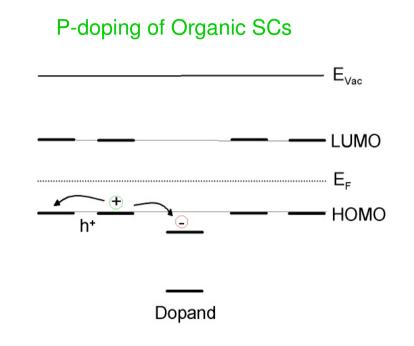
Technology: Spin-On/Ink-Jet

Source: Covion


What happens inside the OLED?

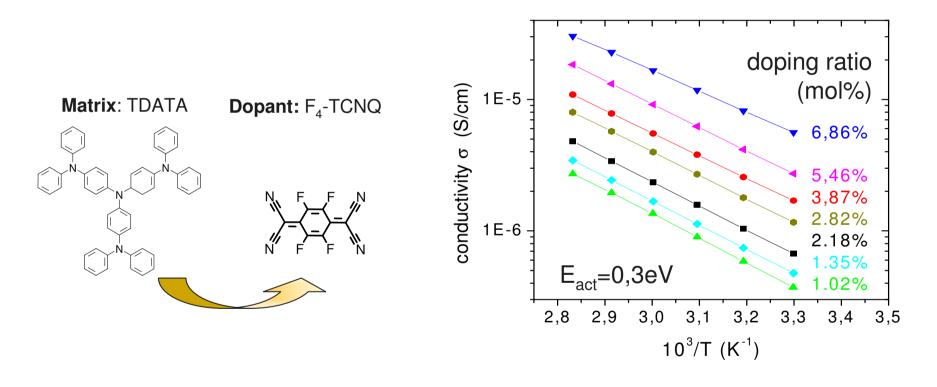
- (1) Charge carrier injection
- (2) Charge carrier transport
- (3) Exciton formation
- (4) Recombination


Novaled PIN OLED® Technology



(redox) Doping

P-doping of Inorganic SCs


add acceptor atom to create hole

- add dopant molecule with low-lying LUMO
- hole mobile? (coulombic attraction, molecular disorder)

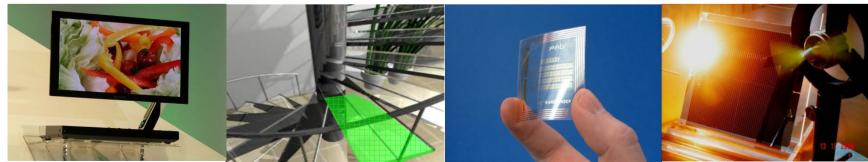
P-doping of amorphous HTLs

Electron transfer \Rightarrow mobile holes \Rightarrow increased conductivity

OLED Efficacy

$$\eta_{external} = b_I \times \frac{hv}{eU} \times \eta_{recomb} \times \eta_{optical}$$

Factor	Current status
1/U: inverse operating voltage	For high brightness higher than thermodynamic limit
η_{optical} : optical out-coupling	w/o enhancement methods around 20%
η_{recomb} : recombination efficiency (singlet-triplet, PL efficiency)	Phosphorescent emitters, blue not stable yet
b _l : electron-hole balance	1 can be reached, more complicated for phosphorescent devices, injection dependent



Doping Technology for Organic Electronics

> Doping shall improve every organic electronic application where charge carrier transport and injection are key properties

- > Application of doping depends on business status of certain technology areas
 - → Started with OLED displays
 - → continued with OLED lighting
 - → continues with Organic solar cells (OPV)
 - → will be Electronic devices (e.g. display drivers, ORFID)

Doping is at the heart of Organic Electronic

Sony

internal

PolyIC

Heliatek

Novaled confidentia

Novaled presentation Technology Entrepeneurship KIT 2011 - Page 30

OLED can be Applied in Numerous Applications...

Display

- Small Size for Portable Handheld Devices, MP3-Players, Digital Cameras
- Medium to Large Size Screens for Monitors & TVs
- Example: SONY TV XEL-1 (11") LG TV (15")

Lighting

- > Design Lighting (decorative, functional)
- > Automotive / Aerospace (cabin, dash)
- > Signage and Advertisement
- Domestic Appliances
- General Illumination
- > Healthcare (Medical & Cosmetics)
- > Backlighting Units (e.g. for LCD)

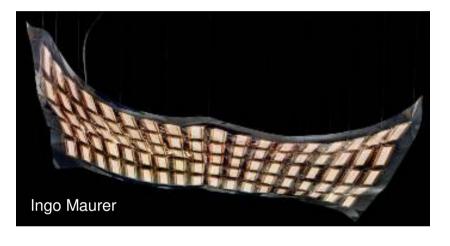
...Bringing Added Value to Displays and Lighting

Display	Lighting
 LCD Manufacturer Advantage Keep LCD Momentum Potential to be cheaper in the future 	 Luminaire Maker Advantage New Business Opportunities Re-arrangement of Value Chain Integrated reflector: fixture and luminary become obsolete
 End Customer Advantage Better Performance Advanced Design Energy Saving Potential 	 End Customer Advantage Flat (and flexible) area light source for revolutionary designs Offering NEW Features

 Green Approach: Low Power Consumption and Mercury free

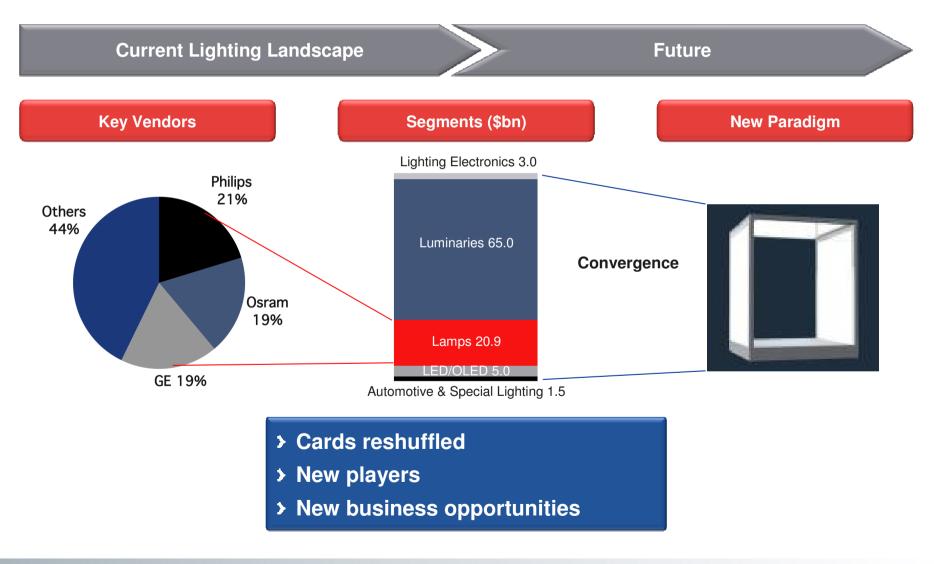
Where are we now? OLED Displays on the Market

OLED has a Bright Future for Lighting


A triple (r)evolution

- Flat (and flexible) area light source for revolutionary designs
- Green Product"
 - > Low power consumption
 - Mercury free
- > Value chain modification

Where are we now? First lighting products and studies introduced



OLED will Modify the Lighting Value Chain

Doping has a Bright Future for Printed Electronics

- Low cost (with cheap substrate) computing
- Flexible electronics
- Printed solar cells

Model of a polymer flexible RFID-tag. Source: Polylc

Novaled's markets

1st: Displays

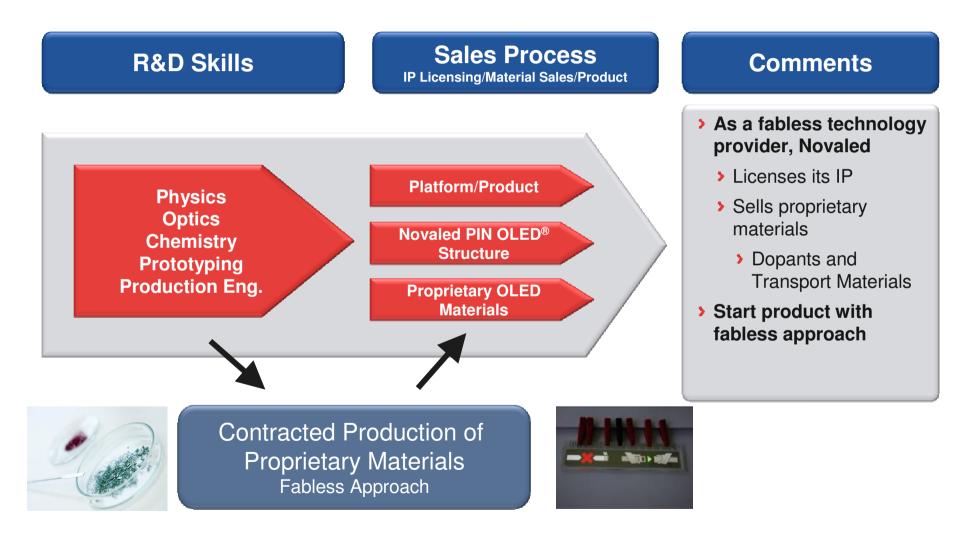
now (mobile) andfuture (TV)trend to AM-OLEDdisplays

2nd: lighting/signagestarts nowhighest powerefficiency a must

Sony X-EL1

Osram /Ingo Maurer

3rd: OPV - technology development - Pilot production in 2011


Heliatek

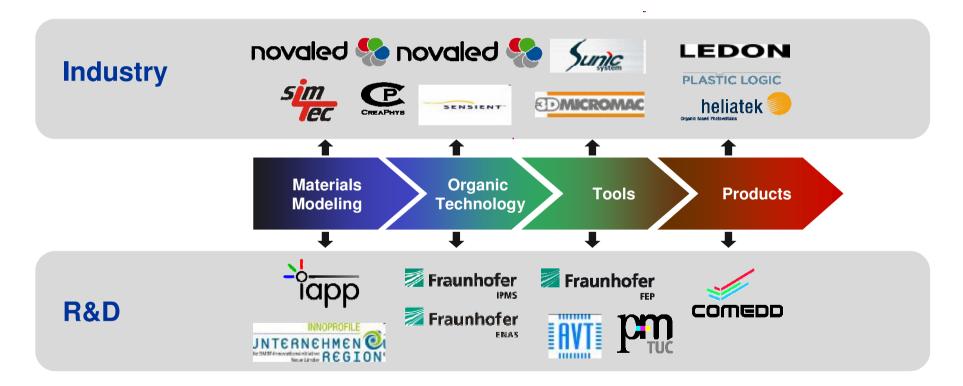
4th: Organic electronic

- Organic circuitries featuring organic CMOS OTFTs, memory, RFID, battery...

Novaled – business model

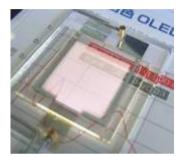
Novaled's Materials: Overview

Material Requirements:


- > evaporation temperature in reasonable range \Rightarrow simple process control
- > low vapor pressure \Rightarrow no cross-contamination
- > no diffusion of dopants in matrix at elevated temperatures \Rightarrow device reliability

Hole Side	Electron Side
Dopable hole transport matrix material with high T _g : NHT-5	Dopable electron transport matrix material with high T_g : NET-5
 T_g > 145° C new improved material (higher lifetime and efficiency): NHT-18 	T _g >105°C ⇒ superior to Bphen (T _g =63°C) at the same electron mobility ⇒ superior to Alq ₃
	>further materials for extended lifetime and higher temperatures are also available: NET-8, NET-18
Temperature & diffusion stable mole- cular p-dopant (strong acceptor): NDP-2	Temperature & diffusion stable molecular n-dopant (strong donor): NDN-1
$T_{evaporation} > 140^{\circ}$ C	$T_{evaporation} > 200^{\circ}$ C
>enhanced lifetime	>enhanced lifetime
>new improved material: NDP-9	>molecular dopant \Rightarrow no alkali-metals!!!
	>new air stable material: NDN-26, $T_{evaporation} > 135^{\circ}$ C

Novaled Local Network

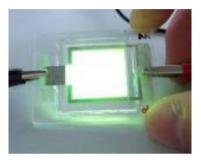

The value chain in the Organic Electronics Saxony

... more than 800 people already working in this fields

Freedom of Device Architecture

Transparent PIN OLED

PIN OLED in headlight

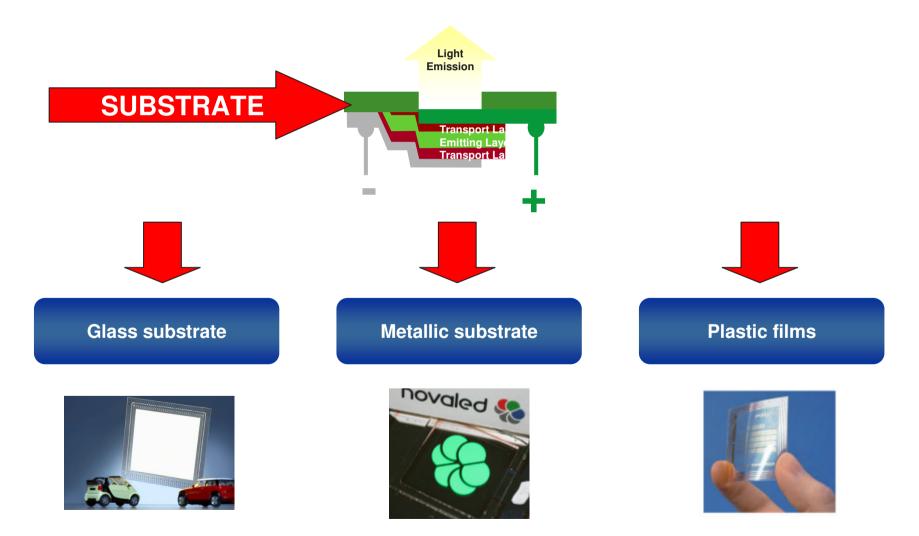

stacked top & bottom emission inverted & non-inverted


```
PIN AM OLED
```


PIN PM OLED

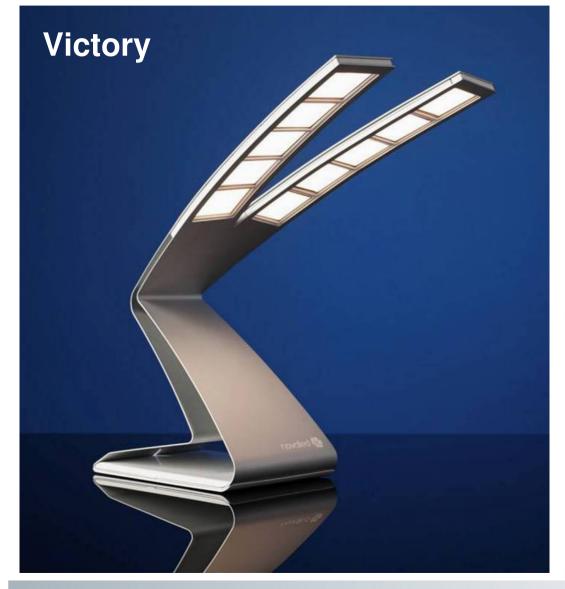
PIN OLED on Printed ITO

PIN OLED on Steel Substrate


Novaled presentation Technology Entrepeneurship KIT 2011 - Page 42

PIN OLED for Lighting

Substrate options for OLED's


Prototype Devices - Achievements

Project with Arcelor Mittal (shown at Light+Building 2010): serial connection of 4 sub-OLEDs, high overall emission area (64%)

frosted-white off-state vs. white light emission in on-state

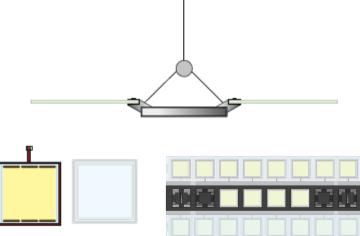
Design idea:

- functional, decorative, capable of being used in an office setting
- > ,V' shape of luminaire body

Construction:

- > 10 OLEDs on glass, 5x5cm active area
- > 5 each in series
- > contacted in cassettes (no OLED module)

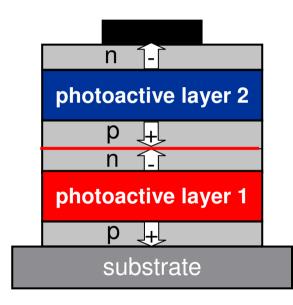
Drawing:

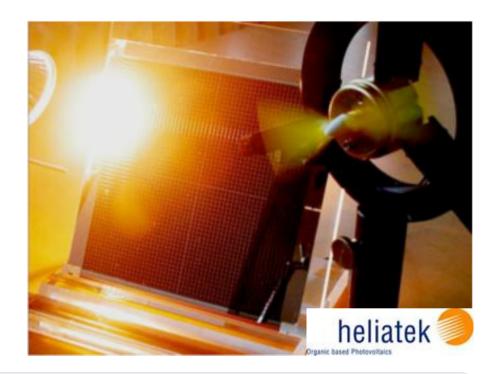

Design idea:

- Hybrid luminaire (LED & OLED)
- functional, decorative, capable of being used as an office suspension

Construction:

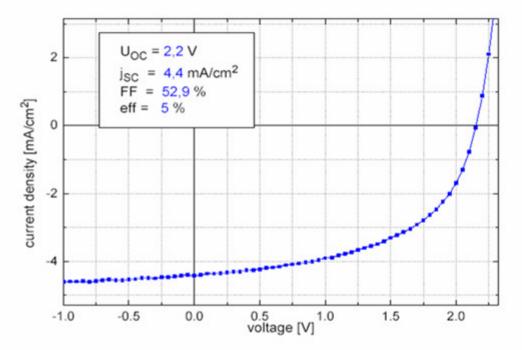
- > 10 OLEDs on glass, 5x5cm active area
- > 5 each in series
- > contacted in cassettes (no OLED module)


Drawing:



Application of Redox Dopants for OPV

PIN tandem solar cell



Efficiency and stability:

- PIN Tandem solar cells for
- > optimized efficiency by optimum harvesting of complete sun spectrum,
- high stability

PIN approach used in **OPV**

- measured with sun simulator
- efficiency reproduced when measured in natural sunlight

Latest result: 8,1% with 1,1 cm² active area

- based on Heliatek multiple p-i-n architecture
- combining novel absorber materials from Heliatek and BASF
- using p- and n-dopants provided by Novaled

Heliatek has taken a license to use Novaled's PIN-OLED[™] technology and Novaled's molecular dopants to develop organic solar cells.

Summary

> Early Days

- Technology developed at University
- > Spin-Off
 - > IP deal with University
 - Venture capital financing secures fincancials needed to *fast* develop products (and hence the company)
 - > Experienced manager at early stage

Novaled today:

- > Novaled Products (materials, technology) used in final products
- > 2011: will be the break-even year
- > Around 100 employees (Chemistry, Physics, Optics, Engineering, ...)
- > Further growth in exisiting (OLED) and new areas (OPV, Electronic)

Novaled AG Tatzberg 49 · 01307 Dresden · Germany Phone: +49 351 796580 · Fax: +49 351 7965829

www.novaled.com